
A method for independent validation of surface fluxes from atmospheric inversion: application to CO₂

Junjie Liu¹

1. Jet Propulsion Lab (JPL), Caltech

Motivation

- No direct flux measurements at comparable spatiotemporal scales.
- We propose a methodology to project the changes of CO₂ concentration errors relative to independent observations to the differences between posterior and prior fluxes.

Methodology

We first define two cost functions that measure the posterior CO_2 (C_{post}) and prior CO_2 (C_{prior}) errors relative to independent observations (O):

$$J_{post} = (\mathbf{C}_{post} - \mathbf{O})^{T} (\mathbf{C}_{post} - \mathbf{O})$$

$$J_{prior} = (\mathbf{C}_{prior} - \mathbf{O})^{T} (\mathbf{C}_{prior} - \mathbf{O})$$

$$\mathbf{C}_{post} = M(\mathbf{f}_{post})$$

Where M is a transport model, and f_{post} is the posterior fluxes

Methodology (continued)

We then define the difference between these cost functions:

$$\Delta J = J_{post} - J_{prior}$$

It can be rewritten as:

$$\Delta \tilde{J} = \left\langle (\mathbf{f}_{post} - \mathbf{f}_{prior}), \mathbf{M}^{T} (\mathbf{C}_{post} - \mathbf{O} + \mathbf{C}_{prior} - \mathbf{O}) \right\rangle$$

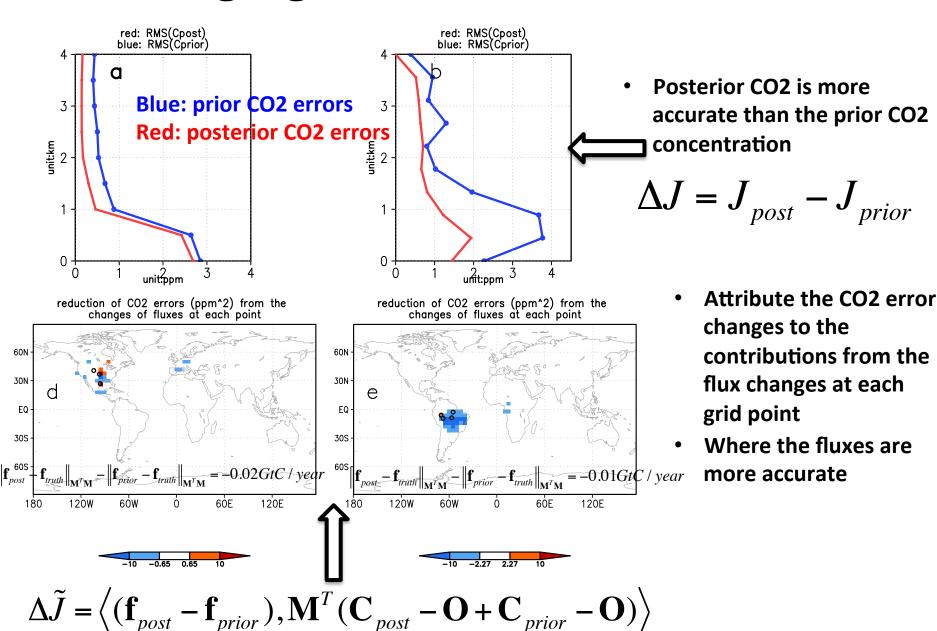
where f_{post} and f_{prior} are the posterior and prior fluxes, and M^T is the adjoint of the transport model. The above equation projects the changes of CO_2 errors to the spatiotemporal differences between posterior and prior fluxes.

Methodology (continued)

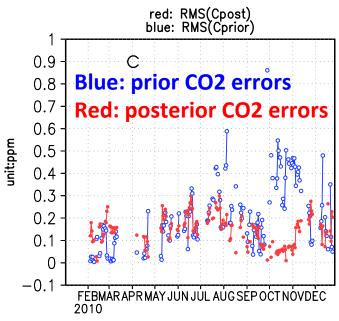
Equation (4) can also be written as:

$$\Delta \tilde{J} = (\mathbf{f}_{post} - \mathbf{f}_{truth})^T \mathbf{M}^T \mathbf{M} (\mathbf{f}_{post} - \mathbf{f}_{truth}) - (\mathbf{f}_{prior} - \mathbf{f}_{truth})^T \mathbf{M}^T \mathbf{M} (\mathbf{f}_{prior} - \mathbf{f}_{truth})$$

• where f_{truth} is the true fluxes. The above equation shows that the posterior fluxes are more accurate than the prior fluxes over a region restricted by M^TM when $\Delta \tilde{J}$ is smaller than zero.

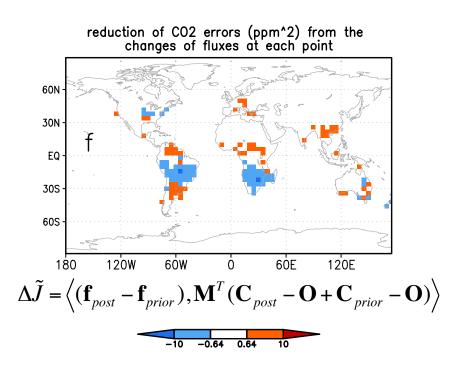

Two questions can be addressed:

- What are the magnitude and sign of the CO₂ error changes from the differences between posterior and prior fluxes at each grid point?
- Within what spatial domain the posterior fluxes are more accurate than the prior fluxes when the posterior CO₂ concentrations are more accurate than the prior CO₂ concentrations relative to independent observations?


OSSE experiment to test the method

- Observing System Simulation Experiments (OSSE)
 - ✓ The prior flux and posterior fluxes have different seasonal
 and diurnal cycle, but the same annual total fluxes
- ACOS-GOSAT observation coverage
- Independent data: simulated aircraft observations at three aircraft sites (CAR, SGP, and TGC) over North America, four aircraft sites (SAN, TAB, ALF, and RBA) over Amazonia, one TCCON site at Lauder, Australia

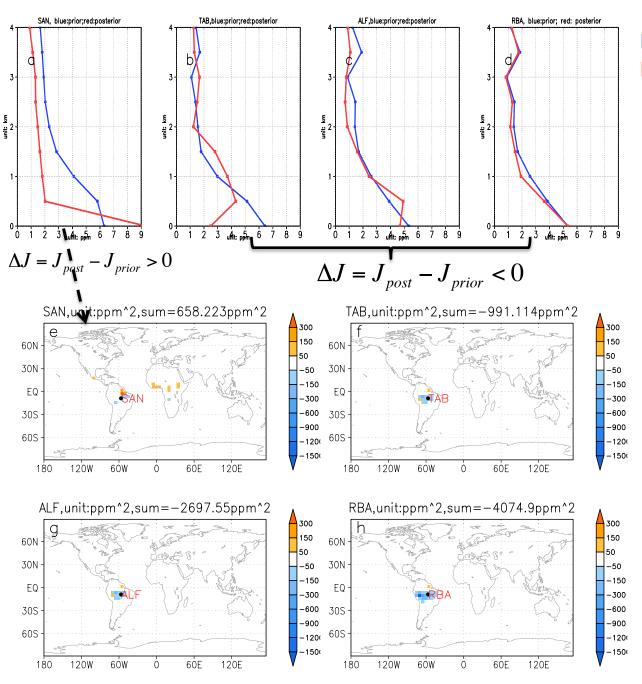
Validating against simulated aircraft obs



Validating against simulated TCCON at Lauder

 Posterior CO2 is more accurate than the prior CO2 concentration

$$\Delta J = J_{post} - J_{prior}$$



$$\left\|\mathbf{f}_{post} - \mathbf{f}_{truth}\right\|_{\mathbf{M}^{T}\mathbf{M}} - \left\|\mathbf{f}_{prior} - \mathbf{f}_{truth}\right\|_{\mathbf{M}^{T}\mathbf{M}} = -0.01GtC / year$$

 Flux changes over a much broader region contribute to the changes of CO2 error at TCCON site at Lauder.

Real data experiment

- Optimize 2010 and 2011 monthly mean biosphere fluxes assimilating ACOS-GOSAT B3.5 land nadir good-quality observations
- 4D-Var flux inversion with GEOS-Chem adjoint model
- Independent data: 2010 and 2011 bi-weekly aircraft observations over Amazonia (Gatti et al., 2014).

Blue: prior CO2 errors
Red: posterior CO2 errors

 The degradation of posterior fluxes contributing to the increase of CO2 errors may result from bias in observations, transport errors, or inversion setup.

Summary

- We propose a validation method that project the changes of CO2 errors relative to independent observations to the spatiotemporal differences between posterior and prior fluxes with an atmospheric transport adjoint model.
- We show that the posterior fluxes are more accurate than the prior fluxes over the regions restricted by M^TM when posterior CO2 is more accurate.
- The method can be applied to any inversions where the direct measurements are not available.
- The method is not limited to variational flux inversion.
- Limitation: the method is limited by the existence of transport errors.